18 research outputs found

    Corpus annotation for mining biomedical events from literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced Text Mining (TM) such as semantic enrichment of papers, event or relation extraction, and intelligent Question Answering have increasingly attracted attention in the bio-medical domain. For such attempts to succeed, text annotation from the biological point of view is indispensable. However, due to the complexity of the task, semantic annotation has never been tried on a large scale, apart from relatively simple term annotation.</p> <p>Results</p> <p>We have completed a new type of semantic annotation, event annotation, which is an addition to the existing annotations in the GENIA corpus. The corpus has already been annotated with POS (Parts of Speech), syntactic trees, terms, etc. The new annotation was made on half of the GENIA corpus, consisting of 1,000 Medline abstracts. It contains 9,372 sentences in which 36,114 events are identified. The major challenges during event annotation were (1) to design a scheme of annotation which meets specific requirements of text annotation, (2) to achieve biology-oriented annotation which reflect biologists' interpretation of text, and (3) to ensure the homogeneity of annotation quality across annotators. To meet these challenges, we introduced new concepts such as Single-facet Annotation and Semantic Typing, which have collectively contributed to successful completion of a large scale annotation.</p> <p>Conclusion</p> <p>The resulting event-annotated corpus is the largest and one of the best in quality among similar annotation efforts. We expect it to become a valuable resource for NLP (Natural Language Processing)-based TM in the bio-medical domain.</p

    A critical review of PASBio's argument structures for biomedical verbs

    Get PDF
    BACKGROUND: Propositional representations of biomedical knowledge are a critical component of most aspects of semantic mining in biomedicine. However, the proper set of propositions has yet to be determined. Recently, the PASBio project proposed a set of propositions and argument structures for biomedical verbs. This initial set of representations presents an opportunity for evaluating the suitability of predicate-argument structures as a scheme for representing verbal semantics in the biomedical domain. Here, we quantitatively evaluate several dimensions of the initial PASBio propositional structure repository. RESULTS: We propose a number of metrics and heuristics related to arity, role labelling, argument realization, and corpus coverage for evaluating large-scale predicate-argument structure proposals. We evaluate the metrics and heuristics by applying them to PASBio 1.0. CONCLUSION: PASBio demonstrates the suitability of predicate-argument structures for representing aspects of the semantics of biomedical verbs. Metrics related to theta-criterion violations and to the distribution of arguments are able to detect flaws in semantic representations, given a set of predicate-argument structures and a relatively small corpus annotated with them

    Semi-automatic conversion of BioProp semantic annotation to PASBio annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semantic role labeling (SRL) is an important text analysis technique. In SRL, sentences are represented by one or more predicate-argument structures (PAS). Each PAS is composed of a predicate (verb) and several arguments (noun phrases, adverbial phrases, etc.) with different semantic roles, including main arguments (agent or patient) as well as adjunct arguments (time, manner, or location). PropBank is the most widely used PAS corpus and annotation format in the newswire domain. In the biomedical field, however, more detailed and restrictive PAS annotation formats such as PASBio are popular. Unfortunately, due to the lack of an annotated PASBio corpus, no publicly available machine-learning (ML) based SRL systems based on PASBio have been developed. In previous work, we constructed a biomedical corpus based on the PropBank standard called BioProp, on which we developed an ML-based SRL system, BIOSMILE. In this paper, we aim to build a system to convert BIOSMILE's BioProp annotation output to PASBio annotation. Our system consists of BIOSMILE in combination with a BioProp-PASBio rule-based converter, and an additional semi-automatic rule generator.</p> <p>Results</p> <p>Our first experiment evaluated our rule-based converter's performance independently from BIOSMILE performance. The converter achieved an F-score of 85.29%. The second experiment evaluated combined system (BIOSMILE + rule-based converter). The system achieved an F-score of 69.08% for PASBio's 29 verbs.</p> <p>Conclusion</p> <p>Our approach allows PAS conversion between BioProp and PASBio annotation using BIOSMILE alongside our newly developed semi-automatic rule generator and rule-based converter. Our system can match the performance of other state-of-the-art domain-specific ML-based SRL systems and can be easily customized for PASBio application development.</p

    Annotation of protein residues based on a literature analysis: cross-validation against UniProtKb

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A protein annotation database, such as the Universal Protein Resource knowledge base (UniProtKb), is a valuable resource for the validation and interpretation of predicted 3D structure patterns in proteins. Existing studies have focussed on point mutation extraction methods from biomedical literature which can be used to support the time consuming work of manual database curation. However, these methods were limited to point mutation extraction and do not extract features for the annotation of proteins at the residue level.</p> <p>Results</p> <p>This work introduces a system that identifies protein residues in MEDLINE abstracts and annotates them with features extracted from the context written in the surrounding text. MEDLINE abstract texts have been processed to identify protein mentions in combination with taxonomic species and protein residues (F1-measure 0.52). The identified protein-species-residue triplets have been validated and benchmarked against reference data resources (UniProtKb, average F1-measure of 0.54). Then, contextual features were extracted through shallow and deep parsing and the features have been classified into predefined categories (F1-measure ranges from 0.15 to 0.67). Furthermore, the feature sets have been aligned with annotation types in UniProtKb to assess the relevance of the annotations for ongoing curation projects. Altogether, the annotations have been assessed automatically and manually against reference data resources.</p> <p>Conclusion</p> <p>This work proposes a solution for the automatic extraction of functional annotation for protein residues from biomedical articles. The presented approach is an extension to other existing systems in that a wider range of residue entities are considered and that features of residues are extracted as annotations.</p

    Challenges for automatically extracting molecular interactions from full-text articles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing availability of full-text biomedical articles will allow more biomedical knowledge to be extracted automatically with greater reliability. However, most Information Retrieval (IR) and Extraction (IE) tools currently process only abstracts. The lack of corpora has limited the development of tools that are capable of exploiting the knowledge in full-text articles. As a result, there has been little investigation into the advantages of full-text document structure, and the challenges developers will face in processing full-text articles.</p> <p>Results</p> <p>We manually annotated passages from full-text articles that describe interactions summarised in a Molecular Interaction Map (MIM). Our corpus tracks the process of identifying facts to form the MIM summaries and captures any factual dependencies that must be resolved to extract the fact completely. For example, a fact in the results section may require a synonym defined in the introduction. The passages are also annotated with negated and coreference expressions that must be resolved.</p> <p>We describe the guidelines for identifying relevant passages and possible dependencies. The corpus includes 2162 sentences from 78 full-text articles. Our corpus analysis demonstrates the necessity of full-text processing; identifies the article sections where interactions are most commonly stated; and quantifies the proportion of interaction statements requiring coherent dependencies. Further, it allows us to report on the relative importance of identifying synonyms and resolving negated expressions. We also experiment with an oracle sentence retrieval system using the corpus as a gold-standard evaluation set.</p> <p>Conclusion</p> <p>We introduce the MIM corpus, a unique resource that maps interaction facts in a MIM to annotated passages within full-text articles. It is an invaluable case study providing guidance to developers of biomedical IR and IE systems, and can be used as a gold-standard evaluation set for full-text IR tasks.</p

    A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A drug-drug interaction (DDI) occurs when one drug influences the level or activity of another drug. The increasing volume of the scientific literature overwhelms health care professionals trying to be kept up-to-date with all published studies on DDI.</p> <p>Methods</p> <p>This paper describes a hybrid linguistic approach to DDI extraction that combines shallow parsing and syntactic simplification with pattern matching. Appositions and coordinate structures are interpreted based on shallow syntactic parsing provided by the UMLS MetaMap tool (MMTx). Subsequently, complex and compound sentences are broken down into clauses from which simple sentences are generated by a set of simplification rules. A pharmacist defined a set of domain-specific lexical patterns to capture the most common expressions of DDI in texts. These lexical patterns are matched with the generated sentences in order to extract DDIs.</p> <p>Results</p> <p>We have performed different experiments to analyze the performance of the different processes. The lexical patterns achieve a reasonable precision (67.30%), but very low recall (14.07%). The inclusion of appositions and coordinate structures helps to improve the recall (25.70%), however, precision is lower (48.69%). The detection of clauses does not improve the performance.</p> <p>Conclusions</p> <p>Information Extraction (IE) techniques can provide an interesting way of reducing the time spent by health care professionals on reviewing the literature. Nevertheless, no approach has been carried out to extract DDI from texts. To the best of our knowledge, this work proposes the first integral solution for the automatic extraction of DDI from biomedical texts.</p

    BioInfer: a corpus for information extraction in the biomedical domain

    Get PDF
    BACKGROUND: Lately, there has been a great interest in the application of information extraction methods to the biomedical domain, in particular, to the extraction of relationships of genes, proteins, and RNA from scientific publications. The development and evaluation of such methods requires annotated domain corpora. RESULTS: We present BioInfer (Bio Information Extraction Resource), a new public resource providing an annotated corpus of biomedical English. We describe an annotation scheme capturing named entities and their relationships along with a dependency analysis of sentence syntax. We further present ontologies defining the types of entities and relationships annotated in the corpus. Currently, the corpus contains 1100 sentences from abstracts of biomedical research articles annotated for relationships, named entities, as well as syntactic dependencies. Supporting software is provided with the corpus. The corpus is unique in the domain in combining these annotation types for a single set of sentences, and in the level of detail of the relationship annotation. CONCLUSION: We introduce a corpus targeted at protein, gene, and RNA relationships which serves as a resource for the development of information extraction systems and their components such as parsers and domain analyzers. The corpus will be maintained and further developed with a current version being available at

    U-Compare bio-event meta-service: compatible BioNLP event extraction services

    Get PDF
    AbstractBackgroundBio-molecular event extraction from literature is recognized as an important task of bio text mining and, as such, many relevant systems have been developed and made available during the last decade. While such systems provide useful services individually, there is a need for a meta-service to enable comparison and ensemble of such services, offering optimal solutions for various purposes.ResultsWe have integrated nine event extraction systems in the U-Compare framework, making them inter-compatible and interoperable with other U-Compare components. The U-Compare event meta-service provides various meta-level features for comparison and ensemble of multiple event extraction systems. Experimental results show that the performance improvements achieved by the ensemble are significant. ConclusionsWhile individual event extraction systems themselves provide useful features for bio text mining, the U-Compare meta-service is expected to improve the accessibility to the individual systems, and to enable meta-level uses over multiple event extraction systems such as comparison and ensemble.This research was partially supported by KAKENHI 18002007 [YK, MM, JDK, SP, TO, JT]; JST PRESTO and KAKENHI 21500130 [YK]; the Academy of Finland and computational resources were provided by CSC -- IT Center for Science Ltd [JB, FG]; the Research Foundation Flanders (FWO) [SVL]; UK Biotechnology and Biological Sciences, Research Council (BBSRC project BB/G013160/1 Automated Biological Event Extraction from the Literature for Drug Discovery) and JISC, National Centre for Text Mining [SA]; the Spanish grant BIO2010-17527 [MN, APM]; NIH Grant U54 DA021519 [AO, DRR]Peer Reviewe

    Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011

    Get PDF
    We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties
    corecore